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ABSTRACT 

The exis t ing a b i l i t y  of two sub-arctic brown water lakes (Monsoon and 
Dickey) to  rea r  juvenile salmonids was determined in order t ha t  the proper 
enhancement technique, e i t he r  lake f e r t i l i z a t i o n  or  supplemental f r y  in t ro-  
duction, could be applied to  each system depending on whether the  f r y  
rearing capaci t ies  were e i t he r  overtaxed or  underuti l ized.  

In general , phosphorus, s i  1 icon and carbon (a1 kal in i  t y )  levels  were very 
high fo r  Alaskan lakes,  and remained high throughout the summer period 
however, i  norganic nitrogen 1 eve1 s were extremely 1 ow. Thus, an increase 
in the  qual i ty  of phytoplankton could be achieved by an increase in the  
N:P r a t i o  through the  introduction of a inorganic nitrogen f e r t i l i z e r .  
The zooplankton community showed l i t t l e  evidence of exis t ing vertebrate 
predation pressure i  . e . ,  the  current  f ry  rearing potential  was under- 
u t i l i zed .  Instead, the zooplankters appeared to  be heavily preyed upon by 
the calanoid Heterocope septentrionaZis. The cladoceran component of the 
zooplankton community was extremely weak being typif ied by a lack of 
Bosminids and by the  presence of Daphnia Zongiremus f .  cephala and Daphnia 
rniddendorffiana two large bodied forms able t o  r e s i s t  Heterocope predation 

The introduction of supplemental f r y  should reduce the  Heterocope population 
resul t ing in a s h i f t  within the zooplankton community towards increased 
production within the cladoceran component. Finally,  t o  take advantage of 
the current  r e l a t i ve ly  large body-size of a l l  zooplankters, f i s h  stock 
introduction should proceed with those species capable of e f fec t ive ly  
foraging only large zooplankters. 



INTRODUCTION 

The capacity of f resh  water lakes t o  serve as rearing areas f o r  salmonid 
f ry  i s  linked in successive fashion from the physical and chemical environ- 
ment, t o  the production of phytoplankton and, in t u r n ,  t o  the  production of 
zooplankton. Zooplankton, being the  basis  f o r  rearing f resh water 
planktivorous f i s h ,  a r e  the  c r i t i c a l  l ink  in the aquatic food chain. As 
both biomass and energy a r e  t ransferred up the  food chain by successive 
predatory s teps ,  the predators,  in t u r n ,  s t ruc tu re  the community composition 
of t h e i r  prey. As the  predation pressure on the zooplankton increases,  
pa r t i cu la r  zooplankters a re  more e f fec t ive ly  u t i l i z ed .  Thus, an analys is  of 
the community composition of the standing crop of prey items can define the 
degree o r  pre-existing magnitude of the  predation process i . e ,  define e i t h e r  
an under o r  over u t i l i z ed  f ry  rearing area.  In addi t ion,  concurrent s tud ies  
on the nu t r i en t  dynamics within both systems will allow us t o  determine the 
potential  of e i t h e r  system f o r  inclusion in to  the lake enrichment program. 

An expanded lake inventory and assessment project  on the upper Copper River 
drainage was i n i t i a t e d  in  September of 1981. The purpose of t h i s  project  
was twofold: (1 ) t o  iden t i fy  su i t ab le  lake systems with excess rearing 
potential  t o  be used by f r y  e.g.,  sockeye salmon (0. nerka) produced a t  the 
Gulkana Spring incubation f a c i l i t y ,  and ( 2 )  t o  ident i fy  systems with pre- 
ex i s t ing  f i s h  stocks t h a t  would prove feas ib le  f o r  the enhancement of an 
overtaxed rearing area via lake enrichment. For example, the  potent ia l  
capacity of the  Gulkana Springs f a c i l i t y  may be upwards of 90 mill ion eggs, 
b u t  before expansion can occur, su i t ab le  sockeye salmon f r y  rearing s i t e s  
must be iden t i f i ed .  In addi t ion,  several lakes off  the Gulkana River have 
been observed t o  support remnant populations of sockeye salmon which maybe 
enhanced by increasing the  nu t r i en t  supply t o  the  trophogenic zone. Thus, 
intensive limnological s tudies  were i n i t i a t e d  on two such lkes ,  Monsoon, 
and Dickey, which were iden t i f i ed  e a r l i e r  as candidates f o r  e i t h e r  
supplemental f r y  introduction o r  f o r  1 ake enrichment. 

Description of Study Area 

Dickey Lake i s  located a t  l a t i t ude  60°55'3", longitude 146O05'9" on the  
middle fork of Gul kana River (Figure 1 )  a t  an elevation of approximately 
884 m .  The surface area of the  lake i s  3.13 x m2 (774 ac res )  while 
the  watershed encompasses 11.9 x 10+6 m2 (2,943 ac res ) .  The maximum depth 
of Dickey lake i s  25 m with a mean depth of 15 m ,  and a volume 43.7 x 
10'6 m3 (Figure 2 ) .  There i s  one major i n l e t  located a t  the south end of 
the lake which drains a tundra bog. 

Monsoon Lake i s  located a t  l a t i t ude  62'49" longitude 146'38' on the  west 
fork of the  Gulkana River (Figure 1 )  a t  an elevation of approximately 
913 m.  The surface area of the lake i s  0.31 x 10+6 m2 (77  ac res )  with a 
watershed area of 11.9 x 10'6 m2 (2,938 ac r e s ) .  The maximum depth of 
Monsoon Lake i s  19 m with a mean depth of 8 m ,  and a to ta l  volume of 2.5 x 
10+6 m3 (Figure 3 ) .  There a r e  two major i n l e t s ,  one a t  the northern end 
of the lake and the other entering the middle of the  lake on the  eastern 
shore. 









METHODS 

à ran sport at ion t o  and from both lakes was provided by f loa t / sk i  equipped 
a i r c r a f t .  Limnological samples were col lec ted from the a i r c r a f t  f l o a t s  
during ice-f ree  periods a f t e r  mooring t o  permanent sampling s t a t i ons .  The 
frequencey of sampling was designed t o  character ize  the lake a t  three  
in te rva l s  during the ice-f ree  period i . e . ,  spring,  summer and l a t e  f a l l  a s  
well as twice during the winter period. The lake was sampled f o r  algal  
nu t r i en t s  (ni trogen,  phosphorus, s i l i con  and carbon) as well a s  o ther  water 
qua l i ty  parameters (see  Alaska Department of Fish and Game, Lake 
Fe r t i l i z a t i on  Guide1 ines)  from both the  epi l  imnetic ( 1  m )  and mid- 
hypo1 imneti c Water samples from mu1 t ip1  e (4 )  cas t s  with a non-metal i  c 
Van Dorn sampler were pooled, s tored in  8-10 l i t e r  t rans luscent  carboys, 
cooled, and immediately transported in light-proof containers t o  Glennallen 
and/or Cordova f o r  f i l t e r i n g  and preservation. Subsequent f i l t e r e d  and 
unf i l tered water samples were stored e i t h e r  ref r igera ted o r  frozen in 
acid-cl eaned (1 0% HC1) , pre-rinsed polybottl  e s .  The pre-processed water 
samples were then sen t  t o  the Soldotna limnology laboratory f o r  analys is .  

All chemical and biological samples were analyzed by methods de ta i l ed  in 
the Alaska Department of Fish and Game 1 imnology manual (Koenings e t  a1 . , 
1980). In general ,  f i  1 t e rab le  react ive  phosphorus (FRP) was analyzed by 
the  molybdate bl ue-ascorbic acid method of Murphy and Riley (1962) as 
modified by Ei senrei ch e t  a1 . ( 1  975). Total phosphorus was determined by 
the FRP procedure a f t e r  persul fa te  digest ion.  Ni t ra te  and n i t r i t e  were 
determined as n i t r i t e  fol  1 owing Sta i  nton e t  a1 . (1 977) a f t e r  cadmi um 
reduction of n i t r a t e .  Ammonium analys is  fol  lowed Stainton e t  a1 . (1977) 
using the  phenolhypochlorite methodology while s i l i c a  analys is  followed 
the procedure of Str ickland and Parsons (1 972). A1 kal i n i  ty  was determined 
by acid t i t r a t i o n  (0.02 N H2S04) t o  pH 4.5 using a Corning model 399A 
spec i f i c  ion meter. 

Primary production (algal  standing crop) was estimated by chlorophyll a 
(chl a )  analysis  a f t e r  the fluorometric procedure of Str ickland and parsons 
(19727. We used the low s t rength  acid addition recommended by Reimann 
(1 978) t o  est imate phaeophyti n .  Water samples (1 -2 1 i  t e r s )  were f i  1 tered 
through 4.25 cm Whatman GF/F  f i l t e r s  t o  which 1 t o  2 mls of a sa tura ted 
MgC03 solut ion were added j u s t  p r io r  t o  the  completion of f i l t r a t i o n .  The 
f i l t e r s  were then stored frozen in individual p lexis l ides  f o r  l a t e r  
analys is .  

Zooplankton were collected from duplicate bottom t o  surface ver t i ca l  tows 
using e i t h e r  a 0.5 m o r  0.2 m diameter (depending upon season),  153 u mesh 
conical zooplankton net. The net was pulled a t  constant 1 m/second, and 
washed we1 1 before removing and then preserving the organisms in 10% 
neutral i  zed sugar-formal in  (Haney and Hal 1 1973). 

Ident i f ica t ion within the genus Daphnia followed Brooks (1957), of the 
genus Bosmina a f t e r  Pennak (1978), and of the copepods a f t e r  Wilson and 
Yeatman (1 959) and/or Harding and Smith (1 974). Enumeration consisted of 
counting t r i p1  i c a t e  1 ml subsamples taken with a Hansen-Stempel p ipet te  in 



a 1 m l  Sedgewick-Rafter c e l l .  S ize ( l eng th )  o f  i n d i v i d u a l  zooplankton were 
obta ined by measuring i n d i v i d u a l s  along a t ransec t  i n  each o f  the  1 m l  
subsamples used i n  i d e n t i f i c a t i o n  and enumeration. Zooplankton were 
measured t o  the  nearest  0.01 mm as described i n  Edmondson and Winberg 
(1 971 ) . 
Bottom p r o f i l e s  were recorded w i t h  a Si-Tex model 256 record ing  fathometer 
along several lake  t ransec ts  and from these depth record ings bathymetr ic  
maps were developed. Using each map, t he  area o f  component depth s t r a t a  
were determined w i t h  a p o l a r  p lanimeter  w i t h  lake  volume (V) being computed 
by summation o f  successive s t r a t a  a f t e r  Hutchinson (1 957) : 

n h  - 
Lake Volume = . c - 3 (A1 + A 2  + m 2 )  

n 
Where: c = sum o f  s t r a t a  volumes i through n 

i -1 
A1 = sur face area o f  upper depth s t r a t a  (m2) 
A2 = sur face area o f  lower depth s t r a t a  (m2) 
h = d is tance between A1 and A2 (m) 

Lake mean depth ( 7 )  was ca l cu la ted  as: 

Where: AL = lake  sur face area (m) 
v = l ake  volume (.106m3) 

The c o l l e c t i o n  o f  physical  data inc luded the  measurement o f  w i t h i n  lake  
temperature and l i g h t  penet ra t ion  p r o f i l e s .  Lake temperature p r o f i l e s  
were measured us ing a Y S I  model 51 meter w i t h  record ings taken a t  1 m 
increments from the  sur face t o  the  l ake  bottom. The a l g a l  l i g h t  compensation 
p o i n t  was def ined as the  depth a t  which 1% o f  the  subsurface 1 i g h t  [photo- 
s y n t h e t i c a l  1y avai  l a b l e  r a d i a t i o n  (400-700 mm)] penetrated, and was 
measured us ing  a Protomatic submersible photometer. Recordings were taken 
a t  several depths between the  sur face and the  compensation depth. Using 
these data, t h e  na tu ra l  l oga r i t hm o f  l i g h t  i n t e n s i t y  was p l o t t e d  aga ins t  
depth, and the  slope o f  t h i s  l i n e  was used t o  c a l c u l a t e  the  l i g h t  e x t i n c t i o n  
c o e f f i c i e n t  by date. I n  add i t i on ,  water transparency was est imated us ing  
a 20-cm Secchi d isk .  

F i n a l l y ,  i n  both the  Tables and Figures we have used the  designat ion o f  e i t h e r  
mg L-1 o r  pg L-1 t o  r e p o r t  concent ra t ion  data. However, i n  t he  bod o f  t h e  Y r e p o r t  we have used e i t h e r  p a r t s  per  m i  11 i o n  (ppm) i n  1 i e u  o f  rng L- and p a r t s  
per  b i l l i o n  (ppb) i n  l i e u  o f  pg L-1. We have made t h i s  conversion i n  order  t o  
reduce. the handl ing t ime o f  t he  r e p o r t  by our support s t a f f .  



RESULTS 

Dickey Lake 

Physical Features 

The euphotic zone (defined by penetration of 1% of sub-surface l igh t )  
ranged from 3.3 m in June to 5.5 m by l a t e  September, and averaged 4.4 m 
(Table 1 ) .  T h u s ,  the euphotic zone occupied from 22% to  36% of the total  
lake volume-, and averaged 29% over the summer season. In June, the 
epi 1 imnion (as defined by the depth of the thermocline) extended t o  8 m ,  
and in August had decreased s l ight ly  in depth to  7 m. Thus, the wind 
mixed upper s t r a t a  occupied from 44% to  50% of the total  lake volume. A 
comparison of the depth of the euphotic zone to  that  of the epilirnnion i s  
limited to June and August because of isothermal conditions found before 
June and during the September sampling period. However, in June the 
euphotic zone occupied approximately 50% of the epilimnion which increased 
in August to  encompass nearly three-fourths of the epi 1 imnetic volume. 
Finally, the Secchi disk depth represented an average, over the ice-free 
season, of nearly 85% of the depth of the euphotic zone. 

During June and August, maximum epilimnetic temperatures were 10°C and 14°C 
respectively (Tab1 e 1 ) . In addition, the temperature profi 1 es suggest 
tha t  a large amount of hypolimnetic heating occurred especially between 
the 30 June and 18 August sampling dates (Figure 4) .  In June, the hypo- 
limnetic stratum was a t  approximately 1°C which increased to  >8"C by the 
middle of August. Since the maximum density of freshwater i s  4°C and the 
lake was thermally s t r a t i f i e d  th i s  change in temperature indicated tha t  
e i ther  the thermal structure had dissipated and reformed between the two 
dates or that  the thermal structure of the water column was significantly 
influenced by the location of the sampling s tat ion immediately adjacent to  
the shore of the lake (Figure 4 ) .  The dissolved oxygen profiles support 
the l a t e r  observation since the amount of dissolved oxygen in the 
hypolimnion was almost constant (approximately 6 ppm) from June through 
the end of September; whereas, the temperature profiles were completely 
different .  Thus, lake mixing probably did n o t  occur, and basin heating 
(thawing) accounted for  the change in the temperature profiles from June 
to  August. 

Di ssol ved Gases 

The dissolved oxygen concentrations ( D . O .  ) exceeded 10 pprn only during 
the mid-winter surface sample when levels in excess of 1 2  pprn were 
observed (Table I ) ,  However, even during th i s  l a t e r  date the percent 
saturation of oxygen within the water column was (90%. In f ac t ,  the 
surface s t r a t a  contained oxygen levels a t  less than 90% saturation (77%- 
87%) on a1 1 dates sampled (Figure 4 ) .  In addition, hypolimnetic oxygen 
level s never exceeded 60% of saturation (47% to 58%) ; however, dissolved 
oxygen levels were a t  or above 6 pprn on a l l  dates sampled. The lowest 
D . O .  readings were observed immediately adjacent to the lake bottom near 
the l i t t o r a l  zone where levels <2 ppm were found which represented from 
17% to 35% saturation. 



Tab1 e 1.  The surface temperature, dissolved oxygen ( D . O .  ) content ,  depth 
of the euphotic zone, Secchi disk depth, and the magnitude of 
snow and ice  cover fo r  Dickey Lake. 

Surface Surface Secchi Euphoti c Snow Ice 
temperature D . O .  disk zone depth depth 

Date ( " C )  (mg L - 1 )  (m) ( m  (cm) (cm) 





Table 2 .  General water q u a l i t y  parameters from Dickey Lake, 
1981 -82. 

Seasonal mean value f S.D. (n=5) 
Parameter 1 m 8 m 

Conduct ivi ty  ( ~ m h o s  cm-1 @ 25°C) 79 + l o  78 - + 9 

A1 kal i n i  t y  (mg L-1 a s  CaC03) 

Calcium (mg L - ~ )  11 - + 2 11 - + 2 

Magnesi urn (mg L - ~  ) 



General Water Qual i ty  Parameters 

As the deeper sampling depth (8 m) was never within the hypol imnion, the 
samples represent the water quality a t  the top ( 1  m) and the bottom (8  m )  
of the epilimnion. As such, the parameters (Table 2 )  are markedly similar 
and show l i t t l e  demonstratable difference between the upper and lower layers 
of the epilimnion. In addition, the conductivity values (%79 u mhos) and 
a1 kal i n i ty  levels are moderately high for  Alaskan lakes especially in 
comparison to  the more coastal systems. We found that the levels of calcium 
(1 1 pprn) and magnesium ( 3  pprn) were again high; and, in addition, tha t  the 
pH was s l ight ly  higher t h a n  neutral whereas for  many Alaskan lakes the norm 
generally l i e s  on the s l ight ly  acidic side of neutral. 

Nutrient Cycles 

Reactive s i l icon levels within the epilimnion were high b o t h  in comparison 
t o  other Alaskan lakes and on an in lake seasonal basis (Table 3 ) .  Con- 
centrations ranged from just  below 4,000 ppb t o  s l ight ly  more than 2,500 
ppb.  However, the s imilar i ty  within the seasonal concentration pattern 
suggested a lack of ut i l izat ion of reactive s i l icon by diatoms during the 
ice-free period. That i s ,  there was a trend for  the lower s t r a t a  t o  retain 
similar amounts of s i l icon in the reactive s t a t e  when compared t o  the upper 
s t r a t a  even during periods when the lake was thermally s t r a t i f i e d ,  i . e . ,  
June and August. 

In contrast ,  the seasonal change of inorganic nitrogen levels demonstrates 
the pattern of nutrient u t i l iza t ion  by the phytoplankton. During the ice 
covered period (from December t o  March) nitrogen was l iberated by microbial 
decomposition reactions; and, by the further process of n i t r i f i ca t ion ,  
was metabal ized into n i t ra te .  Thus, the concentration of n i t r a t e  increased 
from 44 ppb in December t o  80 ppb  by the middle of March. After ice-out, 
algal production quickly reduced the amount of n i t ra te  (and ammonium) to 
barely detectable levels by the end of June. This condi tion persisted for  
the period when a defined epilimnion was present (August); however, by the 
end of September when the lake became isothermal the epilimnion was re- 
suppl ied with n i t r a t e  through mixing with the hypol imnetic stratum. 

The pattern of epilimnetic nutrient ut i l izat ion found for  inorganic 
nitrogen was mirrored in the seasonal pattern of reactive (inorganic) 
phosphorus concentrations (Table 3 ) .  Again, during the ice-over period, 
reactive phosphorus accumulated in the water column due t o  mineralization 
reactions of the bacteria. However, once the lake was ice-free and the 
epi 1 imnion formed (by the end of June), reactive phosphorus levels 
decreased from approximately 33 ppb t o  1 2  ppb ,  a change of 21 ppb which 
was accounted for  in a 27 ppb  increase in particulate (algal ) phosphorus. 
Thereafter, reactive phosphorus levels showed a further reduction into 
August, b u t  by September levels returned t o  levels greater than 20 ppb  
during mixing with hypolimnetic water. Thus, i t  i s  apparent from the 
concentrati on prof i 1 es of each of the primary nutrients (except inorganic 
carbon levels)  tha t  the amounts of reactive s i l icon ,  ammonium, n i t r a t e  + 
n i t r i t e ,  and reactive phosphorus were lower in the upper part of the 



Table 3. Nut r ien t  concent ra t ions  and a lga l  pigments found within t h e  upper and lower por t ions  of 
t h e  epilimnion (1 m and 8 m) within Dickey Lake, 1981-82. 

Date 
Depth 1211 0181 311 5/82 6/30/82* 811 8/82 9/29/82 

Total Phosphorus (pg L-l a s  P )  1 m 30.9 36.1 45.0 27.8 36.2 
8 m 30.1 33.8 33.2 24.4 36.0 

Total F i l t e r a b l e  Phosphorus 1 m 34.6 36.4 17.8 16.7 29.9 
r1 8 m 31.7 35.6 21.2 22.2 31.3 

Fi 1 t e r a b l e  Reactive Phosphorus 1 m 24.3 32.8 12.3 9 .8  21.3 
(14 L- l )  8 m 22.0 31.6 16.5 16.4 23.7 

Ni t r a t e  + N i t r i t e  (pg L-1 a s  N )  1 m 
8 m 

I 
d 

W 
I Ammonium (pg L'] a s  N )  1 m 

8 m 

Reactive S i l i c o n  (pg L-l a s  S i )  1 m 
8 m 

Iron (pg L - ~  a s  Fe) 

Algal Pigments: 
Chlorophyll a (pg L - ~  ) 
Phaeopytin (zg L-1) 

*I m and 11 m 



epilimnion when compared t o  the  values found f o r  the lower portion of the 
epilimnion ( i . e . ,  the top of the hypolimnion). 

Final ly ,  t o t a l  phosphorus concentrations were, l i k e  the  react ive  phosphorus 
l eve l s ,  extremely high compared t o  any lakes studied thus f a r  in Alaska. 
Total phosphorus ranges from 24 ppb  t o  45 ppb and as such represented 450% 
of the permissible phosphorus loading r a t e  f o r  ol igotrophic lake systems 
(Vol 1 enwei der 1976). 

Algal Biomass 

The concentration of chlorophyll a (chl 2) as well as i t s  degradation 
product, phaeophytin, was measured in the  surface s t r a t a  of the lake (Table 
3 ) .  Chl & l eve l s  were low during the ice-over period a t  0.92 ppb  and 
0.74 p p b  during December and March respectively.  In addi t ion,  there  was a 
r e l a t i ve ly  high percentage of inact ive  phaeophytin. During the ice-f ree  
period, the  level  of chl 5 rapidly peaked a t  8.3 ppb by the  end of June 
with l i t t l e ,  i f  any, inact ive  pigment. As the  season progressed, the 
amount of chl a slowly declined t o  5.18 ppb  during August and t o  2.59 ppb  
by l a t e  ~eptemFer.  In addit ion,  the  proportion of inact ive  pigment 
increased from August t o  the end of September indicat ing a decrease in 
a1 gal qua1 i t y  . 
Zoopl ankton 

The zooplankton community of Dickey Lake consisted of f i ve  major species 
of macro-zooplankton including two cladocerans Bosmina Zongirostris and 
Daphnia Zongiremis (wi t h  a sma 1 1 proportion of Daphnia rniddendorffiana) and 
three  copepods CycZops colwnbianus, Diatomus pribiZofensis and Heterocope 
septentr ional is  (Table 4 ) .  In addit ion t o  the macro-zooplankton, three 
forms of r o t i f e r s  were found namely; Kel l ico t t ia  Zongispina, ConochiZoides 
sp. and Conochilus sp. 

In addit ion t o  the individual species of macro-zooplankton, numerical 
density and seasonal timing a r e  a l so  important f ac to rs  in the a v a i l a b i l i t y  
of the  zooplankters t o  foraging f ry .  The cladoceran population was very 
weak in Dickey Lake throughout the year ( r a r e  t o  6,228 organism/m2) 
except f o r  the end of September when Daphnia numbers increased dramatically 
t o  98,726 organisms/m2. T h u s ,  the  f i l t e r  feeding herbivorous forms of 
macro-zooplankton showed extremely low population dens i t i e s  throughout most 
o f  the sampling dates.  

In con t ras t ,  the numerical density of the herbivorous r o t i f e r s  was 
extremely high forming a s i gn i f i c an t  proportion of the zooplankton com- 
munity throughout the  sampling period. Rotifer  density ranged from a low 
of 33,917 organisms/m2 ember t o  a high of 975,308 organisms/m2 in August. 

Numerically, the most important group of macro-zooplankton was the copepods 
which ranged in density from a low of 9,554 organisms/m2 in March t o  a 
high of 903,081 organisms/m2 in June. The dominant copepod was the 
omnivore CycZops coZwnbianus, which was followed in density by the  
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herbivorous calanoid Diaptomus p r ib i lo fens i s ,  and then by the  voracious 
inver tebra te  predator Heterocope sep ten t r iona l i s .  

A f u r t he r  fea tu re  of the  macro-zooplankton community of considerable 
importance t o  feeding f ry  i s  the body-size of the individual zooplankters 
(Table 5 ) .  Of the cladocerans, Daphnia Zongiremus had the l a rges t  body-size 
ranging from 0.89 mm t o  1.00 m m ,  while the  body-size of Bosmina Zongirostr is  
ranged from 0.53 mm t o  0.67 mm. In addit ion,  the  body-size of Daphnia 
middendorffiana was found t o  reach 1.85 m m ,  b u t  i t s  representat ion within 
the zooplankton community was very weak. Within the copepods, the l a rges t  
body-size was found f o r  Heterocope sep ten t r iona l i s  which ranged in body-size 
from 1.96 mm t o  2.92 mm. Following Heterocope in length was Diaptomus 
p r ib i lo fens i s  which had a body-size ranging from 0.65 (immature) t o  1.42 
m m ,  and f i n a l l y  by Cyclops coZwnbianus which ranged in body-size between 
0.73 mm and 0.97 mm. 

Resident Fish 

Adult sockeye salmon were observed in Dickey Lake during the  June sampling 
period, i . e . ,  run timing i s  ea r ly  with adul t  sockeye salmon appearing in 
the lake shor t ly  a f t e r  break-up, and being spawned out by mid-August 
(Roberson, personal communication). Peak escapement est imates,  as deter-  
mined from aer ia l  surveys, f o r  the past  three years were extremely low 
equall ing 250 in 1980, 20 in 1981, and 410 in 1982. Other f i sh  species 
which were found t o  occur were lake t r ou t  ( ~ a l v e l i n u s  m a y c u s h ) ,  whitefish 
(coregonus clupeafomis ) , and Arcti c gray1 i n g  (~hymal lus  a r c t i cu s )  . 

Monsoon Lake 

Physical Features 

The euphotic zone (defined by the  penetration of 1% of sub-surface l i g h t )  
ranged from 3.5 m in June to  6.0 m in l a t e  September (Table 6 ) ,  and 
averaged 4.7 m.  Thus, the  euphotic zone ranged from 36% t o  58% of the  t o t a l  
lake volume and averaged nearly 50% over the summer season. Like the  depth 
of the euphotic zone, the depth of the epilimnion varied between sampling 
dates.  For example, i n  June, the epilimnion extended t o  4 m y  but by August 
had deepened t o  9 m .  T h u s ,  the epilimnion represented from 39% t o  77% of 
the t o t a l  lake volume. A comparison of the euphotic volume t o  the 
epi l  imnetic volume i s  1 imited t o  two dates (June and August) because of 
ice-covered o r  isothermal conditions before and a f t e r  the  mid-period 
sampling dates  respectively.  In June, the  euphotic zone occupied over 90% 
of the epi 1 imnion, b u t ,  by August (because of the deepening thermocline) , 
the euphotic zone represented 75% of the epilimnion. Finally,  the  Secchi 
disk depth averaged 3.8 m during the ice-f ree  period compared t o  an average 
euphotic zone depth of 4.7 m .  Thus, the  Secchi disk depth represented 81% 
of the  depth of the  euphotic zone. 

The maximum surface temperature (14.5"C) was recorded in  June followed by 
general l y  lower temperatures in August (1 3.5"C), and in September (6.8"C) 
(Table 6 ) .  During the winter period, the  surface temperature ( j u s t  below 



Tab1 e 6 .  The surface temperature, dissolved oxygen ( D .  0. ) content ,  depth 
of the euphotic zone, Secchi disk depth, and the magnitude of 
the snow and ice  cover f o r  Monsoon Lake. 

Surface Surface Secchi Euphotic Snow Ice 
temperature D . O .  disk zone depth depth 

Date ( " C )  (mg/l) ( m )  ( m )  (cm) (cm) 

lThis sample date f o r  temperature and D.O.  data only. 



the ice)  was lowered to  1 "C, b u t  the temperature increased with depth 
reaching 4°C near the lake bottom (Figure 5 ) .  During May, a shallow 
stat ion was sampled for  temperature (and for  dissolved oxygen) which showed 
a warming of the deeper water close t o  the lake bottom. However, l ike  the 
profile found for  December, most of the water column was less than 4°C. 
This cooling of the pelagic water column t o  below 4°C could be caused by 
deep permafrost which surrounds the lake combined with extreme heat loss 
during the previous f a l l  overturn period. By the end of June, a s table  
thermal structure had developed separating the lake into two d i s t inc t  
water masses. These d is t inc t  layers persisted into mid-August with the 
epilimnion deepening from <4 m t o  over 9 m in depth. However, by the end 
of September, the lake had cooled t o  an isothermal 6.8" and was presumably 
mixing from top to  bottom. 

Dissolved Gases 

The dissolved oxygen content of the surface stratum was consistantly greater 
than 8 pprn, b u t  never exceeded 1 2  pprn (Table 6 ) .  In addition, the percent 
oxygen saturation within the surface stratum ranged from 65% under the ice 
in December to  115% during the l a t t e r  part of June (Figure 5 ) .  During 
August and September, the surface of the lake was only 86%-84% saturated, 
respectively. Be1 ow the surface, the concentration of dissolved oxygen 
dropped as did the percent saturation. For example, within the hypo- 
limnion, oxygen levels sagged to approximately 6 pprn and (except for  June) 
were <57% saturated. Concentrations of oxygen continued to decrease near 
the bottom to  levels a t  or  below 3 pprn (between 18% and 20% of saturation) 
during December, August and September. In June, the ent i re  dissolved 
oxygen profile was consistently above 8 pprn (or a low of 63% saturation) 
even within the bottom s t r a t a .  Overall, oxygen levels were only c r i t i c a l l y  
low within the 15 m to  19 m layer which represented (3% of the total  lake 
vol ume. 

Finally, the dissolved oxygen profile found during August revealed an oxygen 
pulse a t  the top of the thermocline a t  9-10 meters. The cause of th i s  
anomally (as we will discuss l a t e r )  was a 'bloom' of diatoms located on 
the t o p  of the thermocline. 

General Water Quality Parameters 

Conductivity values were relat ively high (102 p mhos cm-l) for  Alaska lake 
systems, and  showed a f a i r l y  uniform seasonal pattern within both the 1 m 
depth and the deeper 1 2  m stratum (Table 7 ) .  The lower depth sampled was 
representative of the hypolimnetic layer except for  the August sampling 
period when the epilimnion had deepened to the point of influencing the 
1 2  m depth. Alkalinity levels were high within b o t h  s t r a t a  a t  s l ight ly  
less  t h a n  60 mg L-1 which corresponded with high calcium (15 ppm to  16 ppm) 
and magnesium ( 3  ppm to  4 ppm) levels.  Finally, the pH levels within the 
1 ake were s l  ightly greater than neutral (approximately 7.5) and showed 
l i t t l e  variation throughout the sampling period. 





Table 7 .  General water q u a l i t y  parameters from Monsoon Lake, 1981-82. 

Seasonal mean value S.  D. 
Parameter 1 m 12 m 

Conductivity (pmhos cm-1 @ 25°C) 102 - + 12 103 - + 9  

P H 7.59 - + 0.18 7.51 - + 0.21 

A1 kal i n i  t y  (mg L m l  a s  CaC03) 57 - + 8 58 - + 8 

Calcium (mg L-1) 15 - + 3 16 - + 2 

Magnesium (mg L-]  ) 4 - + l  3 - + l  



Nutrient Cycles 

Reactive s i l icon levels within Monsoon Lake were relat ively high within 
b o t h  the epilimnetic and hypolimnetic s t r a t a  (Table 8 ) .  During the winter, 
reactive s i l icon levels were generally greater than 5,500 ppb;  however, 
soon a f t e r  ice-out, levels of reactive s i l icon dropped t o  (4,500 ppb during 
June. By the end of September, s i l icon levels had continued to decline, 
reaching levels of s l ight ly  greater than 3,500 ppb .  In August there was a 
a considerable difference in sil icon concentrations between the 1 m (4,351 
p p b )  and 1 2  m (855 p p b )  depths. However, in general, very 1 i t t l e  seasonal 
change in s i l icon levels was observed within the surface s t r a t a  compared t o  
the hypolimnetic concentration, even during June and August when the lake 
was thermally s t r a t i f i ed .  

In contrast to  the pattern observed in s i l icon concentrations, inorganic 
nitrogen levels (especially n i t r a t e  + n i t r i t e )  showed a considerable decrease 
during the ice-free period (Table 8 ) .  Ammonium levels during December 
reached an inlake seasonal high b u t  were extremely low. Thereafter, the 
ammonium concentration f e l l  even lower, approaching the detection l imit  of 
the analysis method, by l a t e  September. In addition, very l i t t l e  difference 
was observed in ammonium levels between the epilimnetic and hypolimnetic 
layers. Nitrate + n i t r i t e  concentrations were low during December (26-38 
ppb) , b u t  increased t o  approximately 90 ppb by March. However, soon a f t e r  
ice-out the n i t r a t e  + n i t r i t e  levels decreased sharply t o  reach extremely 
low levels in August ((0.5 p p b ) .  In September, the n i t ra te  + n i t r i t e  
levels remained extremely low. Thus, total  inorganic nitrogen levels 
decreased in the lake from a high of nearly 100 ppb  during March t o  a low 
of approximately 6 p p b  by September. 

Reactive phosphorus levels underwent a seasonal change similar to  tha t  of 
the inorganic nitrogen levels (Table 8 ) .  For example, during the March 
sampling period reactive phosphorus levels were approximately 8 p p b ,  b u t  
by l a t e  June had decreased to  below 4 ppb and by the end of September were 
further reduced reaching 2 ppb. However, reactive phosphorus was detectable 
throughout the sampling period compared to  undetectable n i t r a t e  + n i t r i t e  
levels,  and only background levels of ammonium. 

Total phosphorus levels peaked within the epilimnion a f t e r  ice-out during 
June a t  18 ppb (Table 8 ) ,  and within the hypo1 imnion a t  14 ppb during the 
same sampling date. In general, total  phosphorus levels were in excess of 
10 p p b  throughout the study period and centered around 11 ppb.  As such, 
the estimated yearly loading of phosphorus exceeds tha t  of oligotrophic 
systems by 80% or was nearly double c r i t i ca l  loading (Vol lenweider, 1976). 

A1 gal Biomass 

Chlorophyll a (chl a )  levels in Monsoon Lake were extremely low during the 
ice-over perTod of T~ecember and March) reaching a maximum of 0.55 ppb in 
March (Table 8 ) .  After ice-out, chl a levels increased dramatically to  
2.96 ppb by the end of June. This level of chl a persisted throughout the 
sampling period resulting in a summer average c h i  - a content within the 
surface stratum of 3.08 ppb.  
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Zooplankton 

The zooplankton community consisted of seven species of macro-zoopl ankters , 
three  cladocerans and four copepods in addition t o  three genera of r o t i f e r s  
(Tabl e 9 ) .  The r o t i f e r s  were represented by KeZZicottia Zongispina, 
ConchiZus sp. and Conochiloides sp..  The cladocerans were represented by 
Bosmina longirostr is ,  Daphnia middendorffiana, and by the ra re  Daphnia 
Zongiremis. The copepod community consisted of CycZops coZumbianus, CycZops 
vernaZis (extremely ra re )  , Diaptomus pribiZofensis , and Heterocope 
s ep t en t r ioml i s  . 

Within the  zooplankton community, the  r o t i f e r s  were numerically dominant 
during both the  spring (June) and l a t e  f a l l  (September) samples i . e . ,  
e i t h e r  j u s t  a f t e r  o r  during lake overturn,  respectively.  The density of 
ConochiZoides ranged from none t o  502,802 organisms/m2, t h a t  of KeZlicott ia 
tongispina ranged from 1 ,473 organi sms/m2 t o  104,498 organi sms/m2, and 
f i n a l l y  the density of ConochiZus ranged between none and 1,831 
individual s/m2. 

Of the macro-zooplankton the numerically dominant organism was the cyclopoid 
copepod, CycZops coZwnbianus (along w i t h  a r a re  Cyclops ve rna l i s )  which 
ranged in density from 21,775 individual s/m2 i n  mid-winter t o  158,329 
individual s/m2 by 1 a t e  June. After  CycZops, the most abundant zooplankters 
were the calanoid copepods Diaptornus and Heterocope. The density of the 
herbivorous Diaptomus ranged from none in mi d-wi n t e r  t o  55,732 organi smslm2 
in mid-August, and t h a t  of the predaceous Heterocope ranged from none in 
March t o  over 7,000/m2 during June. 

The other  pr inciple  component of most pelagic macro-zooplankton communities, 
cladocerans, was noticably absent from the lake unt i l  the  August and, in 
pa r t i cu l a r ,  the  September samples. Bosmina dens i t i e s  ranged from none 
during March t o  a high of 1,035 individual s/m2 during August, and, Daphnia 
middendorffiana was equally r a r e  ranging in density from none t o  1,035 
individual s/m2 in September. In essence, the f i  1 t e r  feeding herbivorous 
macro-zooplankton were non-existent,  and were consequently replaced as a 
feeding group by the  r o t i f e r s .  

As a group the  macro-zooplankters i n  Monsoon Lake a l l  possessed large  
body-s i zes (Tabl e 10).  For example, Daphnia rniddendorffiana was pa r t i  cu- 
l a r l y  large  ranging from 1.36 mm t o  1.98 mm, b u t  was very rare .  Bosmina 
longirostr is  was again f a i r l y  r a r e ,  b u t  was extremely large  ranging from 
0.60 mm t o  0.69 mm in body-size. O f  the copepods, the inver tebra te  predator 
Heterocope was the  l a rge s t  zooplankter found in the lake ranging from 
1.57 mm t o  2.99 mm in body-size. Following Heterocope i n  body-size was 
Diaptomus which ranged from a low of 0.60 mm ( as  j u s t  mature adu l t s )  in 
June t o  1 .32 mm in September. Final l y  , the  smal l e s t  of the copepods was 
Cyclops columbianus which ranged in body-size from 0.66 mm in December t o  
0.90 mm i n  August and September. 



Table 9. Numerical composition of t h e  zooplankton community a t  Monsoon Lake, 
1981-82. 

~umber/m2 
Date 

Organism 1211 0181 311 3/82 6130182 811 8/82 9/29/82 

Cl adocera 

Bosmina longirostris 11 9 0 Rare 1,035 797 
Daphnia middendorffiana 16 0 Rare Rare 1,035* 

Copepoda 

Cyclops columbianus** 21,775 50,836 158,329 106,688 33,201 
Diaptomus pribilofensis 0 51 7 17,829 55,732 29,458 
Heterocope septentrionalis 79 0 7,131 366 797 

Roti f e r a  

Kellicottia longispina 1,473 1,831 104,498 19,665 6,609 
Conochi Zus s p . 51 7 0 0 0 1,831 
Conochi loides s p . 0 1,074 502,802 2,388 94,745 

*Daphnia Zongiremis forrna typica ( r a r e  ) . 
**Cyclops vernalis ( r a r e )  . 



Tab le  10. Mean body-s ize  [mm + 1 s t a n d a r d  d e v i a t i o n  (S.D. ) I  and sample s i z e  ( n )  o f  t h e  macro-zooplankton 
from Monsoon Lake, 1981 -82. 

Date 
1211 0181 31 1 3/82 6130182 811 8/82 9/29/82 

Taxa n X ;t S.D. n X f S.D. n X f S.D. n X f S.D. n X f S.D. 

Copepoda 

CycZops 30 0.66+.31 - 30 0.81t.21 30 0.81+.21 - 20 0 .90 t .06  - 20 0 . 9 0 t . 1 4  - 

Diap tomus 1 1 .19 -- 3 0 .96t .01 - 15 0 .60 t .09  - 20 1 . 2 6 t . 1 6  - 20 1.32+.09 - 

Heterocope 4 2.90+.17 - -- - - - - 20 1.575.31 7 2 . 7 2 t . 0 8  - 4 2 .74 t .11  - 

C l  adocera  

Daphnia 1 1.76 -- - - - - - - 1 1 .98 -- 1 1.36 -- 6 1.51+.37* 
I - 
N 
0-l 

I Bosmina 2 0.69f.01 - - - - - - 5 0 .60 t .12  10 0 .65 t .10  10 0.67+.07 - - - 

*D. Zongiremus 0.90+.19 - (n = 4 ) .  



Resident Fish 

The only known resident f i sh  species in Monsoon Lake i s  Arctic Grayling 
( ~ h ~ r n a l l u s  a rc t icus)  with anadromous species such as sockeye salmon never 
having been observed in the lake. 

DISCUSSION 

Monsoon and Dickey lakes l i e  in the same general vicinity within the Gulkana 
River drainage, a tr ibutary of the Copper River (Figure 1 ) .  Monsoon i s  one- 
tenth the s ize of Dickey Lake and i s  almost one-half as deep, b u t  both are  
brown-water systems potentially accessable to  anadromous salmonids. As such, 
b o t h  are potential s i t e s  for  f ish stock enhancement e i ther  by the technique 
of lake enrichment or by supplemental additions of rearing f ry ,  i . e . ,  lake 
stocking. Thus, our approach was designed t o  allow us t o  evaluate the 
relat ive potential of these al ternat ive techniques. 

The organic s ta in  within b o t h  systems dictates to  a large extent,  the depth 
of the epi 1 imnion and the depth of 1 ight penetration (Hasler e t  a1 . 1951 ) . 
For both lake systems, the depth of the euphotic zone was less  than or 
almost equal to  the depth s f  the epilimnion, i . e . ,  the en t i re  trophogenic 
zone was well within the epilimnion. In addition, observed surface water 
temperatures never exceeded 15°C in e i ther  system. This i s  important in 
that  water s t r a t a  having temperatures above 15OC have been shown t o  be less  
e f f ic ien t  as a sockeye salmon rearing area (Goodlad e t  a l .  1974). Finally, 
dissolved oxygen concentrations in both systems were consistently be1 ow 100% 
saturation even within the surface s t r a t a  during the spring-summer period. 
However, lower oxygen concentrations are typical of brown water lakes 
(Johnson and Hasler, 1954), b u t  extremely low oxygen level s were confined 
t o  s t r a t a  (representing 1-3% of the total  lake volume) immediately adjacent 
t o  the sediments. 

Since the euphotic zone and the epilimnion were closely coupled, nutrient 
u t i l iza t ion  within the trophogenic zone of both systems was f a i r ly  rapid 
following ice-out. This caused a decrease in inorganic nutrients within 
the epilimnion which was especially severe in regard to  nitrogen levels 
within Dickey Lake (Table 11) .  In f ac t ,  the ra t io  of inorganic nitrogen t o  
inorganic phosphorus (IN: IP) was unusally low (<6:1) in the lake throughout 
the year. However, the lowest ra t ios  were found t o  occur in the upper 
portion of the epilimnion during June and August. These low rat ios  agree 
with finding a lack of s i l icon depletion within the epilimnion during the 
same time period. That i s ,  low 1N:IP rat ios  s h i f t  any competitive nutrient 
uptake advantage away from diatoms and toward green and blue-green species, 
i . e . ,  those taxa which do not require s i l icon for  growth .  This same lack 
of s i l icon ut i l izat ion was noted to  occur in Monsoon Lake (Table 8)  during 
the open water period as were relat ively low 1N:IP ra t ios  which were 
1 4 :  However, 1N:IP rat ios  were consistently higher in Monsoon Lake 
when compared to  the same sampling periods in Dickie Lake except during the 
f a l l  overturn period. Because of the high nutrient ra t ios  found to persis t  
in the hypo1 imnion (12  m) of Monsoon Lake, a diatom bloom developed a t  the 



Table 11. The r a t i o  o f  i n o r g a n i c  n i t r o g e n  t o  i n o r g a n i c  phosphorus (by atoms) 
w i t h i n  t h e  upper (1 m) and lower  ( 8  m) s t r a t a  of t h e  e p i l i m n i o n  o f  
Dickey Lake, and w i t h i n  t h e  e p i l i m n i o n  (1  m) and hypol imnion (12 m) 
o f  Monsoon Lake. 

Date 
Lake (Depth) 1211 0181 3/ 15/82 6130182 811 8/82 9/29/82 

Dickey (1  m) 5:1 6: 1 <I :1 <I :I 6 : 1 

Dickey ( 8  m) 5:1 6 : l  1 :1 1 :1 6 : 1 
................................................................................ 

Monsoon ( I  m) 20: 1 28: 1 5 : l  4:l  5 : l  

Monsoon (12 m) 23: 1 26 : l  20: 1 1 0 : l  4 : l  

Lake condi ti on: Ice-covered Open water-  Open water-  
s t r a t i f i e d  i so therma l  



bottom of the  thermocl ine during August. This bloom was responsible fo r  
the pulse in oxygen concentration (Figure 5 ) ,  and the depletion of hypo- 
l imni t i c  s i l i con  (Table 8 ) .  In con t ras t ,  bloom formation in the  epilimnion 
was prevented by a low IN: IP r a t i o  ( 4 :  1 ) which had a1 ready been established 
in the  lake by the end of June. 

Moreover, reactive phosphorus remained unuti l ized in both systems even 
during the open water period, and t o t a l  phosphorus concentrations were 
extremely high f o r  Alaska lakes. Thus, a nu t r ien t  enrichment program, i f  
any, would be limited t o  pure nitrogen additions since both systems appear 
t o  be def ic ien t  in inorganic nitrogen. Similar addit ions have corrected 
s imilar  nitrogen def ic ien t  conditions in Bear Lake, Alaska which has 
resulted in an almost two fold increase in coho salmon smolt production. 

This i s  not t o  say t ha t  the present algal  production found fo r  e i t h e r  
system was 1 ow, indeed, a1 gal production (standing crop) was re1 a t i  vely 
high as chl a levels  in Dickey Lake were greater  than 8 ppb, and were 
greater  than-3 ppb  in Monsoon Lake (Tables 3 and 8 ) .  The importance of low 
nutr ient  r a t i o s  l i e s  in the resu l tan t  composition of the  algal community 
because, i n  general,  green and blue green a1 gal ce l l  s a r e  l e s s  avai lable  
as food t o  the  zooplankton (Porter  1975, 1977). Zooplankton, being the  
basis  f o r  freshwater f i sh  production fo r  plantivorous f i s h ,  a re  the 
crucial  l ink in the aquatic food chain between primary production and 
rearing of f ry .  

This potential  reduction i n  algal  qual i ty  caused by low nitrogen:high 
phosphorus loading from the  bog, sphagnum dominated watersheds [which a re  
notoriously low in nitrogen (Wetzel 1975)l may reduce the  importance of 
non-discriminating forms of f i l t e r  feeding macro-zooplankton t o  the zoo- 
plankton community. 

Indeed, the  contribution of herbivorous f i l t e r  feeding macro-zooplankton 
(e.  g. Daphnia and ~osmina )  t o  the  zooplankton community of both lakes was 
extremely low (Tables 4 and 9 ) .  In con t ras t ,  the herbivorous r o t i f e r  
population was r e l a t i ve ly  large as was the  numerical density of the 
se lec t ive  pa r t i c l e  feeding Diaptomus. This suggests t h a t  herbivorous 
forms of zooplankton a re  n o t  1 imited who1 ly  by the qua1 i t y  of the algal  
community. In addi t ion,  the body-size of the zooplankters present in 
both systems a r e  extremely large ,  fu r ther  suggesting a lack of f i s h  pre- 
dation pressure ( s i ze  se lec t ive)  which would ac t  t o  se lec t ive ly  remove 
the large body-sized cladocerans from the zooplankton community. Thus, 
we feel  t ha t  the  low density of Bosmina and Daphnia was n o t  due to  an 
insuf f ic ien t  food reserve or ver tebrate  predation pressure, b u t  was 
caused by predation pressure from the invertebrate predator Heterocope 
sep ten t r iona t i s .  The calonoid copepod, Heterocope septentrionaZis,  i s  
an extremely e f f i c i e n t  predator on smaller body-sized species of zoo- 
plankton, par t i cu la r ly  Daphnia, and Bosmina (0 '  Brien and Schmidt 1979, 
Luecke and 0 '  Brien 1983). 

The e f f ec t  of invertebrate predation pressure on the zooplankton community 
s t ruc ture  i s  fundamentally d i f f e r en t  from tha t  caused by vertebrate 
predation pressure. That i s ,  rearing f i s h ,  being visual feeders detect  
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prey by visual s i z e  which in many instances i s  r e la ted  d i r ec t l y  t o  body- 
s i z e .  Actual se lect ion of a given prey species i s  variable because of the  
d i f f e r en t i a l  escape a b i l i t i e s  of the  zooplankters, e.g. , cl adocerans a r e  
somewhat 1 imi ted in escape a b i l i t y  r e l a t i ve  t o  copepods (Drenner and 
McComas 1980). Thus, large  cladocerans a r e  usually the f i r s t  prey t o  be 
eliminated by rearing f ry .  Increased protection from f i s h  predation l i e s  
in the a b i l i t y  of the zooplankters t o  lower body-size, i . e . ,  visual s i z e .  
An observable r e s u l t  of such a s t ra tegy  i s  t h a t  a given population of 
zooplankter, e , g . ,  Bosmina, have been observed t o  have a mean body-size of 
0.60 mm in a sockeye-poor lake versus a mean body-size of 0.38 mrn in an 
adjacent sockeye-rich system (Koenings , unpublished da ta ) .  

The response of the zooplankton community to  inver tebra te  predation pres- 
sure i s  just the opposite t o  t h a t  described f o r  ver tebra te  predation. 
Predaceous copepods a r e  t a c t i l e  feeders locating and holding prey by s i z e ,  
i . e . ,  smaller and l e s s  robust organisms stand a greater  chance of ac tua l ly  
being consumed than do l a rger  more robust organisms. Hence, protection 
from inver tebra te  predation l i e s  in  a large body-size. Thus, l a rger  
body-sized species of Daphnia, f o r  example, would tend t o  have a survival 
advantage in inver tebra te  predator controlled systems, and smaller body- 
sized species would tend t o  have a survival advantage in a ver tebra te  
predator control 1 ed 1 ake. 

The dilemma facing herbivorous cladocerans i s  t h a t  lake systems contain 
both ver tebra te  and inver tebra te  predators. The response t o  t h i s  has been 
t o  increase t a c t i l e  body-size without increasing visual body-size. Thus, 
within a species ,  e .g . ,  Daphnia Zongiremus, two forms have been described 
(Riessen and O'Brien 1980) t o  be present under varying degrees of inverte-  
bra te  predation pressure. One (described as Soma typica)  i s  present under 
conditions of l e s s  intense inver tebra te  predation pressure; the second 
(described as forma cephala) i s  present under conditions of s i gn i f i c an t  
inver tebra te  predation pressure. The cephaZa morph has an expanded 
transparent  carapace which increases body-size discouraging inver tebra te  
predation while a t  the same time maintaining a low visual body-size 
(0 '  Brien e t  a l .  1980). Thus, the 'helmet'  formation i s  analogous i n  
function t o  the gelatinous sheath surrounding the cladoceran zooplankter, 
Holopediurn gibberurn. 

The zooplankton community within both Monsoon and Dickey Lakes r e f l e c t s  
predation pressure from two sources (ver tebra te  and inver tebra te ) ,  b u t  i s  
defined t o  a g rea te r  extent  by inver tebra te  predation pressure. Within 
Monsoon Lake, we feel  t h a t  there  was a s ignf icant  inver tebra te  pressure 
on the  zooplankton community because of the presence of Daphnia 
rniddendorffiana (Tabl e 9 )  a 1 arger body-si zed cl adoceran (Tabl e 10) compared 
t o  the  r a r e  (and more e f fec t ive ly  preyed upon) Daphnia longiremus f .  typica.  
In addi t ion,  ver tebra te  predation on the  zooplankton i s  l imited t o  Arctic 
grayling,  a predator common t o  a r c t i c  and subarct ic  lakes. In con t ras t ,  
Dickey Lake i s  populated by several ver tebra te  predators,  i . e . ,  Arctic 
grayling,  lake t r ou t ,  and the almost obl igate  planktivorous sockeye salmon 
f ry .  Sockeye f ry  a r e  extremely e f f i c i e n t  planktivores capable of re ta in ing 
even extremely small body-sized zooplankton (Figure 6 ) .  T h u s ,  i n  Dickey 
Lake, f i sh  predation pressure may have removed the larger  body-sized 



Daphnia middendorffiana (Tab1 e 4 )  favoring the survival of the small e r  
body-sized Daphnia longiremus (Table 5 ) .  Yet, the invertebrate predation 
pressure was s t i l l  present so, instead of the f .  typica found in Monsoon 
Lake, the Daphnia in Dickey Lake were f .  cephala. Finally, the body-sizes 
of Cyclops, Bosmina, a n d  Daphnia were consistently larger in Monsoon Lake 
(which had relat ively less vertebrate predation pressure) compared to  
Dickey Lake which sustained a relat ively greater predation pressure by 
resident f ish stocks. In contrast ,  the body-sizes of Diaptomus and 
Heterocope were consistently greater in Dickey Lake compared to  those in 
Monsoon Lake. The differences between zooplankton body-sizes between the 
two lakes can be accounted for  by the inabi l i ty  of cyclops, Bosmina, and 
Daphnia to  evade predation by both Arctic grayling and lake t r o u t ;  whereas 
Diaptomus and Heterocope can more effectively avoid capture (Kettle 
and 0' Brien 1978; Schmidt and 0' Brien 1982). 

Finally, i f  suff ic ient  vertebrate predation pressure i s  placed on the zoo- 
plankton community of both lakes, Heterocope septentr ional is  should be 
quickly eliminated from the lake as i s  the dipteran zooplankton predator 
Chaoborus following the introduction of planktivorous f ish to  previously 
f ish- less  systems (Van Ende 1975, Crone 1981 ) .  Following the el imination 
of Heterocope, Bosmina and Daphnia populations should increase, although 
the body-sizes will be smaller. In f ac t ,  Daphnia middendorffiana and 
Daphnia Zongiremis f .  cephaZa should both disappear and be replaced by 
the smaller body-sized Daphnia longiremus f .  typica.  The importance of 
changing both the species composition of the zooplankton community and 
individual zooplankter body-sizes upon f ish stock introduction l i e s  in the 
differential foraging ability of the introduced fry (Figure 6 ) .  Thus, t o  
take fu l l  advantage of the existing large body-sizes sf  the en t i re  range 
of species within the zooplankton community of b o t h  lakes, f ish stock 
introduction should begin with the fry requiring the largest  forage items, 
i . e . ,  rainbow trout  and/or chinook salmon. 



RECOMMENDATIONS 

1 )  Fish stock introduction should proceed ( i f  possible)  with those 
species capable of retaining the larger  forms of zooplankton already 
present in b o t h  systems. 

2 )  A chinook/coho salmon introduction may well be suited for Monsoon 
Lake as i t  i s  a  shal low system with a large  1 i  t t o r a l  area providing 
both a pelagic and a benthic food source. 

3) A rainbow trout introduction may well be suited fo r  Dickey Lake as i t  
has a larger  pelagic area su i tab le  fo r  the planktivorous f ry .  

4 )  Sockeye salmon f r y  introductions are  su i tab le  fo r  both systems with 
an anticipated combined capacity of from 3.0 t o  3.5 mil l ion spring f ry .  

5)  Nutrient enrichment may well increase the capacity of both systems 
t o  rear  juvenile salmonids by the introduction of inorganic nitrogen, 
b u t  may well be limited (benef i t :cost  wise) t o  the larger  Dickey Lake 
sys tern. 

6 )  Continued moni t o r i n g  of each system (or  a t  a  minimum of Dickey Lake) 
i s  des i rable  t o  document the s h i f t  in zooplankton species caused by 
the  large sca le  introduction of a vertebrate predator, and t o  
ascer ta in  the effectiveness of the  stocking a t  pre-determined f r y  
densi t ies .  
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